(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
append(@l1, @l2) → append#1(@l1, @l2)
append#1(::(@x, @xs), @l2) → ::(@x, append(@xs, @l2))
append#1(nil, @l2) → @l2
subtrees(@t) → subtrees#1(@t)
subtrees#1(leaf) → nil
subtrees#1(node(@x, @t1, @t2)) → subtrees#2(subtrees(@t1), @t1, @t2, @x)
subtrees#2(@l1, @t1, @t2, @x) → subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)
subtrees#3(@l2, @l1, @t1, @t2, @x) → ::(node(@x, @t1, @t2), append(@l1, @l2))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
append(@l1, @l2) → append#1(@l1, @l2)
append#1(::(@x, @xs), @l2) → ::(@x, append(@xs, @l2))
append#1(nil, @l2) → @l2
subtrees(@t) → subtrees#1(@t)
subtrees#1(leaf) → nil
subtrees#1(node(@x, @t1, @t2)) → subtrees#2(subtrees(@t1), @t1, @t2, @x)
subtrees#2(@l1, @t1, @t2, @x) → subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)
subtrees#3(@l2, @l1, @t1, @t2, @x) → ::(node(@x, @t1, @t2), append(@l1, @l2))
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
::/0
node/0
subtrees#2/1
subtrees#2/3
subtrees#3/2
subtrees#3/3
subtrees#3/4
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
append(@l1, @l2) → append#1(@l1, @l2)
append#1(::(@xs), @l2) → ::(append(@xs, @l2))
append#1(nil, @l2) → @l2
subtrees(@t) → subtrees#1(@t)
subtrees#1(leaf) → nil
subtrees#1(node(@t1, @t2)) → subtrees#2(subtrees(@t1), @t2)
subtrees#2(@l1, @t2) → subtrees#3(subtrees(@t2), @l1)
subtrees#3(@l2, @l1) → ::(append(@l1, @l2))
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
append(@l1, @l2) → append#1(@l1, @l2)
append#1(::(@xs), @l2) → ::(append(@xs, @l2))
append#1(nil, @l2) → @l2
subtrees(@t) → subtrees#1(@t)
subtrees#1(leaf) → nil
subtrees#1(node(@t1, @t2)) → subtrees#2(subtrees(@t1), @t2)
subtrees#2(@l1, @t2) → subtrees#3(subtrees(@t2), @l1)
subtrees#3(@l2, @l1) → ::(append(@l1, @l2))
Types:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil
nil :: :::nil
subtrees :: leaf:node → :::nil
subtrees#1 :: leaf:node → :::nil
leaf :: leaf:node
node :: leaf:node → leaf:node → leaf:node
subtrees#2 :: :::nil → leaf:node → :::nil
subtrees#3 :: :::nil → :::nil → :::nil
hole_:::nil1_0 :: :::nil
hole_leaf:node2_0 :: leaf:node
gen_:::nil3_0 :: Nat → :::nil
gen_leaf:node4_0 :: Nat → leaf:node
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
append,
append#1,
subtrees,
subtrees#1They will be analysed ascendingly in the following order:
append = append#1
subtrees = subtrees#1
(8) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@xs),
@l2) →
::(
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2subtrees(
@t) →
subtrees#1(
@t)
subtrees#1(
leaf) →
nilsubtrees#1(
node(
@t1,
@t2)) →
subtrees#2(
subtrees(
@t1),
@t2)
subtrees#2(
@l1,
@t2) →
subtrees#3(
subtrees(
@t2),
@l1)
subtrees#3(
@l2,
@l1) →
::(
append(
@l1,
@l2))
Types:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil
nil :: :::nil
subtrees :: leaf:node → :::nil
subtrees#1 :: leaf:node → :::nil
leaf :: leaf:node
node :: leaf:node → leaf:node → leaf:node
subtrees#2 :: :::nil → leaf:node → :::nil
subtrees#3 :: :::nil → :::nil → :::nil
hole_:::nil1_0 :: :::nil
hole_leaf:node2_0 :: leaf:node
gen_:::nil3_0 :: Nat → :::nil
gen_leaf:node4_0 :: Nat → leaf:node
Generator Equations:
gen_:::nil3_0(0) ⇔ nil
gen_:::nil3_0(+(x, 1)) ⇔ ::(gen_:::nil3_0(x))
gen_leaf:node4_0(0) ⇔ leaf
gen_leaf:node4_0(+(x, 1)) ⇔ node(leaf, gen_leaf:node4_0(x))
The following defined symbols remain to be analysed:
subtrees#1, append, append#1, subtrees
They will be analysed ascendingly in the following order:
append = append#1
subtrees = subtrees#1
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
subtrees#1(
gen_leaf:node4_0(
n6_0)) →
gen_:::nil3_0(
n6_0), rt ∈ Ω(1 + n6
0)
Induction Base:
subtrees#1(gen_leaf:node4_0(0)) →RΩ(1)
nil
Induction Step:
subtrees#1(gen_leaf:node4_0(+(n6_0, 1))) →RΩ(1)
subtrees#2(subtrees(leaf), gen_leaf:node4_0(n6_0)) →RΩ(1)
subtrees#2(subtrees#1(leaf), gen_leaf:node4_0(n6_0)) →RΩ(1)
subtrees#2(nil, gen_leaf:node4_0(n6_0)) →RΩ(1)
subtrees#3(subtrees(gen_leaf:node4_0(n6_0)), nil) →RΩ(1)
subtrees#3(subtrees#1(gen_leaf:node4_0(n6_0)), nil) →IH
subtrees#3(gen_:::nil3_0(c7_0), nil) →RΩ(1)
::(append(nil, gen_:::nil3_0(n6_0))) →RΩ(1)
::(append#1(nil, gen_:::nil3_0(n6_0))) →RΩ(1)
::(gen_:::nil3_0(n6_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@xs),
@l2) →
::(
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2subtrees(
@t) →
subtrees#1(
@t)
subtrees#1(
leaf) →
nilsubtrees#1(
node(
@t1,
@t2)) →
subtrees#2(
subtrees(
@t1),
@t2)
subtrees#2(
@l1,
@t2) →
subtrees#3(
subtrees(
@t2),
@l1)
subtrees#3(
@l2,
@l1) →
::(
append(
@l1,
@l2))
Types:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil
nil :: :::nil
subtrees :: leaf:node → :::nil
subtrees#1 :: leaf:node → :::nil
leaf :: leaf:node
node :: leaf:node → leaf:node → leaf:node
subtrees#2 :: :::nil → leaf:node → :::nil
subtrees#3 :: :::nil → :::nil → :::nil
hole_:::nil1_0 :: :::nil
hole_leaf:node2_0 :: leaf:node
gen_:::nil3_0 :: Nat → :::nil
gen_leaf:node4_0 :: Nat → leaf:node
Lemmas:
subtrees#1(gen_leaf:node4_0(n6_0)) → gen_:::nil3_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_:::nil3_0(0) ⇔ nil
gen_:::nil3_0(+(x, 1)) ⇔ ::(gen_:::nil3_0(x))
gen_leaf:node4_0(0) ⇔ leaf
gen_leaf:node4_0(+(x, 1)) ⇔ node(leaf, gen_leaf:node4_0(x))
The following defined symbols remain to be analysed:
subtrees, append, append#1
They will be analysed ascendingly in the following order:
append = append#1
subtrees = subtrees#1
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol subtrees.
(13) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@xs),
@l2) →
::(
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2subtrees(
@t) →
subtrees#1(
@t)
subtrees#1(
leaf) →
nilsubtrees#1(
node(
@t1,
@t2)) →
subtrees#2(
subtrees(
@t1),
@t2)
subtrees#2(
@l1,
@t2) →
subtrees#3(
subtrees(
@t2),
@l1)
subtrees#3(
@l2,
@l1) →
::(
append(
@l1,
@l2))
Types:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil
nil :: :::nil
subtrees :: leaf:node → :::nil
subtrees#1 :: leaf:node → :::nil
leaf :: leaf:node
node :: leaf:node → leaf:node → leaf:node
subtrees#2 :: :::nil → leaf:node → :::nil
subtrees#3 :: :::nil → :::nil → :::nil
hole_:::nil1_0 :: :::nil
hole_leaf:node2_0 :: leaf:node
gen_:::nil3_0 :: Nat → :::nil
gen_leaf:node4_0 :: Nat → leaf:node
Lemmas:
subtrees#1(gen_leaf:node4_0(n6_0)) → gen_:::nil3_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_:::nil3_0(0) ⇔ nil
gen_:::nil3_0(+(x, 1)) ⇔ ::(gen_:::nil3_0(x))
gen_leaf:node4_0(0) ⇔ leaf
gen_leaf:node4_0(+(x, 1)) ⇔ node(leaf, gen_leaf:node4_0(x))
The following defined symbols remain to be analysed:
append#1, append
They will be analysed ascendingly in the following order:
append = append#1
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
append#1(
gen_:::nil3_0(
n383_0),
gen_:::nil3_0(
b)) →
gen_:::nil3_0(
+(
n383_0,
b)), rt ∈ Ω(1 + n383
0)
Induction Base:
append#1(gen_:::nil3_0(0), gen_:::nil3_0(b)) →RΩ(1)
gen_:::nil3_0(b)
Induction Step:
append#1(gen_:::nil3_0(+(n383_0, 1)), gen_:::nil3_0(b)) →RΩ(1)
::(append(gen_:::nil3_0(n383_0), gen_:::nil3_0(b))) →RΩ(1)
::(append#1(gen_:::nil3_0(n383_0), gen_:::nil3_0(b))) →IH
::(gen_:::nil3_0(+(b, c384_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(15) Complex Obligation (BEST)
(16) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@xs),
@l2) →
::(
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2subtrees(
@t) →
subtrees#1(
@t)
subtrees#1(
leaf) →
nilsubtrees#1(
node(
@t1,
@t2)) →
subtrees#2(
subtrees(
@t1),
@t2)
subtrees#2(
@l1,
@t2) →
subtrees#3(
subtrees(
@t2),
@l1)
subtrees#3(
@l2,
@l1) →
::(
append(
@l1,
@l2))
Types:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil
nil :: :::nil
subtrees :: leaf:node → :::nil
subtrees#1 :: leaf:node → :::nil
leaf :: leaf:node
node :: leaf:node → leaf:node → leaf:node
subtrees#2 :: :::nil → leaf:node → :::nil
subtrees#3 :: :::nil → :::nil → :::nil
hole_:::nil1_0 :: :::nil
hole_leaf:node2_0 :: leaf:node
gen_:::nil3_0 :: Nat → :::nil
gen_leaf:node4_0 :: Nat → leaf:node
Lemmas:
subtrees#1(gen_leaf:node4_0(n6_0)) → gen_:::nil3_0(n6_0), rt ∈ Ω(1 + n60)
append#1(gen_:::nil3_0(n383_0), gen_:::nil3_0(b)) → gen_:::nil3_0(+(n383_0, b)), rt ∈ Ω(1 + n3830)
Generator Equations:
gen_:::nil3_0(0) ⇔ nil
gen_:::nil3_0(+(x, 1)) ⇔ ::(gen_:::nil3_0(x))
gen_leaf:node4_0(0) ⇔ leaf
gen_leaf:node4_0(+(x, 1)) ⇔ node(leaf, gen_leaf:node4_0(x))
The following defined symbols remain to be analysed:
append
They will be analysed ascendingly in the following order:
append = append#1
(17) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol append.
(18) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@xs),
@l2) →
::(
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2subtrees(
@t) →
subtrees#1(
@t)
subtrees#1(
leaf) →
nilsubtrees#1(
node(
@t1,
@t2)) →
subtrees#2(
subtrees(
@t1),
@t2)
subtrees#2(
@l1,
@t2) →
subtrees#3(
subtrees(
@t2),
@l1)
subtrees#3(
@l2,
@l1) →
::(
append(
@l1,
@l2))
Types:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil
nil :: :::nil
subtrees :: leaf:node → :::nil
subtrees#1 :: leaf:node → :::nil
leaf :: leaf:node
node :: leaf:node → leaf:node → leaf:node
subtrees#2 :: :::nil → leaf:node → :::nil
subtrees#3 :: :::nil → :::nil → :::nil
hole_:::nil1_0 :: :::nil
hole_leaf:node2_0 :: leaf:node
gen_:::nil3_0 :: Nat → :::nil
gen_leaf:node4_0 :: Nat → leaf:node
Lemmas:
subtrees#1(gen_leaf:node4_0(n6_0)) → gen_:::nil3_0(n6_0), rt ∈ Ω(1 + n60)
append#1(gen_:::nil3_0(n383_0), gen_:::nil3_0(b)) → gen_:::nil3_0(+(n383_0, b)), rt ∈ Ω(1 + n3830)
Generator Equations:
gen_:::nil3_0(0) ⇔ nil
gen_:::nil3_0(+(x, 1)) ⇔ ::(gen_:::nil3_0(x))
gen_leaf:node4_0(0) ⇔ leaf
gen_leaf:node4_0(+(x, 1)) ⇔ node(leaf, gen_leaf:node4_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
subtrees#1(gen_leaf:node4_0(n6_0)) → gen_:::nil3_0(n6_0), rt ∈ Ω(1 + n60)
(20) BOUNDS(n^1, INF)
(21) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@xs),
@l2) →
::(
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2subtrees(
@t) →
subtrees#1(
@t)
subtrees#1(
leaf) →
nilsubtrees#1(
node(
@t1,
@t2)) →
subtrees#2(
subtrees(
@t1),
@t2)
subtrees#2(
@l1,
@t2) →
subtrees#3(
subtrees(
@t2),
@l1)
subtrees#3(
@l2,
@l1) →
::(
append(
@l1,
@l2))
Types:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil
nil :: :::nil
subtrees :: leaf:node → :::nil
subtrees#1 :: leaf:node → :::nil
leaf :: leaf:node
node :: leaf:node → leaf:node → leaf:node
subtrees#2 :: :::nil → leaf:node → :::nil
subtrees#3 :: :::nil → :::nil → :::nil
hole_:::nil1_0 :: :::nil
hole_leaf:node2_0 :: leaf:node
gen_:::nil3_0 :: Nat → :::nil
gen_leaf:node4_0 :: Nat → leaf:node
Lemmas:
subtrees#1(gen_leaf:node4_0(n6_0)) → gen_:::nil3_0(n6_0), rt ∈ Ω(1 + n60)
append#1(gen_:::nil3_0(n383_0), gen_:::nil3_0(b)) → gen_:::nil3_0(+(n383_0, b)), rt ∈ Ω(1 + n3830)
Generator Equations:
gen_:::nil3_0(0) ⇔ nil
gen_:::nil3_0(+(x, 1)) ⇔ ::(gen_:::nil3_0(x))
gen_leaf:node4_0(0) ⇔ leaf
gen_leaf:node4_0(+(x, 1)) ⇔ node(leaf, gen_leaf:node4_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
subtrees#1(gen_leaf:node4_0(n6_0)) → gen_:::nil3_0(n6_0), rt ∈ Ω(1 + n60)
(23) BOUNDS(n^1, INF)
(24) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@xs),
@l2) →
::(
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2subtrees(
@t) →
subtrees#1(
@t)
subtrees#1(
leaf) →
nilsubtrees#1(
node(
@t1,
@t2)) →
subtrees#2(
subtrees(
@t1),
@t2)
subtrees#2(
@l1,
@t2) →
subtrees#3(
subtrees(
@t2),
@l1)
subtrees#3(
@l2,
@l1) →
::(
append(
@l1,
@l2))
Types:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil
nil :: :::nil
subtrees :: leaf:node → :::nil
subtrees#1 :: leaf:node → :::nil
leaf :: leaf:node
node :: leaf:node → leaf:node → leaf:node
subtrees#2 :: :::nil → leaf:node → :::nil
subtrees#3 :: :::nil → :::nil → :::nil
hole_:::nil1_0 :: :::nil
hole_leaf:node2_0 :: leaf:node
gen_:::nil3_0 :: Nat → :::nil
gen_leaf:node4_0 :: Nat → leaf:node
Lemmas:
subtrees#1(gen_leaf:node4_0(n6_0)) → gen_:::nil3_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_:::nil3_0(0) ⇔ nil
gen_:::nil3_0(+(x, 1)) ⇔ ::(gen_:::nil3_0(x))
gen_leaf:node4_0(0) ⇔ leaf
gen_leaf:node4_0(+(x, 1)) ⇔ node(leaf, gen_leaf:node4_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
subtrees#1(gen_leaf:node4_0(n6_0)) → gen_:::nil3_0(n6_0), rt ∈ Ω(1 + n60)
(26) BOUNDS(n^1, INF)